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How to make a complex system – a recipe

• Take enough correlated constituents (preferably electrons);

• Add constraints (dimensionality) and/or interactions;

• Add further symmetry constraints, according to taste;

• Add disorder to mix everything well;

• Enjoy!

(Do not try this at home)
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The physicist’s approach: playing with toys
(and enjoying it)

• Construct theoretical models which capture universal features of different
real systems

• Free-boundary problems in correlated quantum systems:

System Name Use
2D electrons in magnetic field Quantum Hall droplets quantum information

2D frustated spin systems glassy states information theory
1D interacting electrons nanostructures nanotechnology
1D quantum magnets spin chains entanglement
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Quantum droplets Complexity ...

Quantum Hall droplets

2D electrons in transversal magnetic field, and confining
electrostatic potential (1985 and 1998 Nobel prizes)
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Quantum droplets Complexity ...

Incompressible fluids ... with a twist

Elementary magnetic fluxes (tubes) infinitesimally deform the
droplet.
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Topological exitations and quantum computing

• Quantum computing is great, but ... it cannot work

• Local operations indistinguishable from fluctuations

• Turn on the lights = reset quantum computer ??

• Idea (Kitaev, Freedman): use topological exitations as states

• Must first understand how droplet evolves

• Problem becomes “stochastic electrostatics”
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Quantum droplets Complexity ...

Quantum droplets as Coulomb charges
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2D spin systems
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Disordered spin systems Complexity ...

Spin systems and hydrodynamics
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Quantum magnets Complexity ...

Entanglement in 1D – free boundary again !
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